MEDIA GALLERY :
jump to gallery selectionHI Juno
This mini-documentary tells the story of how amateur radio operators sent a Morse Code "HI" to NASA's Jupiter-bound Juno spacecraft. Would Juno hear their call?
NASA/JPL-Caltech
Fly into the Great Red Spot of Jupiter with NASA’s Juno Mission
This animation takes the viewer on a simulated flight into, and then out of, Jupiter’s upper atmosphere at the location of the Great Red Spot. It was created by combining an image from the JunoCam imager on NASA's Juno spacecraft with a computer-generated animation.
The perspective begins about 2,000 miles (3,000 kilometers) above the cloud tops of the planet's southern hemisphere. The bar at far left indicates altitude during the quick descent; a second gauge next to that depicts the dramatic increase in temperature that occurs as the perspective dives deeper down. The clouds turn crimson as the perspective passes through the Great Red Spot. Finally, the view ascends out of the spot.
The perspective begins about 2,000 miles (3,000 kilometers) above the cloud tops of the planet's southern hemisphere. The bar at far left indicates altitude during the quick descent; a second gauge next to that depicts the dramatic increase in temperature that occurs as the perspective dives deeper down. The clouds turn crimson as the perspective passes through the Great Red Spot. Finally, the view ascends out of the spot.
NASA/JPL-Caltech
A "Flight" Over Jupiter
This video uses images from NASA’s Juno mission to recreate what it might have looked like to ride along with the Juno spacecraft as it performed its 27th close flyby of Jupiter on June 2, 2020. During the closest approach of this pass, the Juno spacecraft came within approximately 2,100 miles (3,400 kilometers) of Jupiter’s cloud tops. At that point, Jupiter’s powerful gravity accelerated the spacecraft to tremendous speed – about 130,000 mph (209,000 kilometers per hour) relative to the planet.
Citizen scientist Kevin M. Gill created the video using data from the spacecraft’s JunoCam instrument. The sequence combines 41 JunoCam still images digitally projected onto a sphere, with a virtual “camera” providing views of Jupiter from different angles as the spacecraft speeds by. The original JunoCam images were taken on June 2, 2020, between 2:47 a.m. PDT (5:47 a.m. EDT) and 4:25 a.m. PDT (7:25 a.m. EDT).
Citizen scientist Kevin M. Gill created the video using data from the spacecraft’s JunoCam instrument. The sequence combines 41 JunoCam still images digitally projected onto a sphere, with a virtual “camera” providing views of Jupiter from different angles as the spacecraft speeds by. The original JunoCam images were taken on June 2, 2020, between 2:47 a.m. PDT (5:47 a.m. EDT) and 4:25 a.m. PDT (7:25 a.m. EDT).
NASA/JPL-Caltech
Juno Approach Movie of Jupiter and the Galilean Moons
NASA's Juno spacecraft captured a unique time-lapse movie of the Galilean satellites in motion about Jupiter. The movie begins on June 12th with Juno 10 million miles from Jupiter, and ends on June 29th, 3 million miles distant. The innermost moon is volcanic Io; next in line is the ice-crusted ocean world Europa, followed by massive Ganymede, and finally, heavily cratered Callisto.
Galileo observed these moons to change position with respect to Jupiter over the course of a few nights. From this observation he realized that the moons were orbiting mighty Jupiter, a truth that forever changed humanity's understanding of our place in the cosmos. Earth was not the center of the Universe. For the first time in history, we look upon these moons as they orbit Jupiter and share in Galileo’s revelation. This is the motion of nature's harmony.
Galileo observed these moons to change position with respect to Jupiter over the course of a few nights. From this observation he realized that the moons were orbiting mighty Jupiter, a truth that forever changed humanity's understanding of our place in the cosmos. Earth was not the center of the Universe. For the first time in history, we look upon these moons as they orbit Jupiter and share in Galileo’s revelation. This is the motion of nature's harmony.
NASA/JPL-Caltech